Home
Class 12
MATHS
tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1...

tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)

Promotional Banner

Similar Questions

Explore conceptually related problems

If "S" is the sum of the first "10" terms of the series tan "^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+tan^(-1)((1)/(21))+.... ,then "tan(S)" is equal to:

tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)(1)/(2)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))

tan^(-1)((4)/(7))+tan^(-1)((1)/(7)) = tan^(-1)((7)/(9))

tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^(-1)((1)/(2))