Home
Class 11
MATHS
If alphaa n dbeta are the solutions of ...

If `alphaa n dbeta` are the solutions of `acostheta+bsintheta=c ,` then show that `"cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2)` (ii) `cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are the solutions of a cos theta+b sin theta=c , then prove that : cos (alpha- beta)= (2c^2- (a^2+b^2))/(a^2+b^2) .

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

If alpha and beta are the solution of the equation a sec theta+b tan theta=c then show that tan(alpha+beta)=(2bc)/(b^(2)-c^(2))

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alphaandbeta are the two different roots of equation a costheta+bsintheta=c prove that (i) tan(alpha+beta)=(2ab)/(a^(2)-b^(2)) (ii) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha\ &\ beta satisfy the equation, a cos2theta+b sin2theta=c then prove that : cos^2alpha+cos^2beta=(a^2+a c+b^2)/(a^2+b^2)