Home
Class 12
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0, prove that (...

If `xsqrt(1+y)+ysqrt(1+x)=0,` prove that `(dy)/(dx)=-1/((x+1)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((1+x)^2)

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If xsqrt(1+y)+ysqrt(1+x)=0 , prove that dy/dx=(-1)/((1+x)^2

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

If xsqrt(1 + y) + ysqrt(1 + x) = 0 show that (dy)/(dx) = - 1/(1 + x)^2