Home
Class 11
MATHS
If a,b,c,d are in GP then show that (a-b...

If `a,b,c,d` are in GP then show that `(a-b+c)(b+c+d)=ab+bc+cd`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c ,d are in H.P., then show that ab + bc + cd =3ad

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d are in G.P then show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2 .

If a,b,c,d are in G.P than show that ab,ca,bc,bd are also in G.P.

If a,b,c,d be in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2

If a, b, c, d are in H.P then ab + bc + cd =

If a, b, c and d are in G.P. show that (a^2+ b^2+ c^2) (b^2 + c^2 + d^2)= ( ab + bc + cd)^2 .