Home
Class 9
MATHS
If (3^(5x)*(81)^2*6561)/(3^(2x))=3^7 the...

If `(3^(5x)*(81)^2*6561)/(3^(2x))=3^7` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (3^(5x)xx81^2xx6561)/(3^(2x))=3^7 , then x=

If (3^(5x)x81^(2)x6561)/(3^(2x))=3^(7), then x=3 (b) -3(c)(1)/(3)(d)-(1)/(3)

(3^(5x)xx81^(2)xx6561)/(3^(2x))=3^(7), then x=

If (3^(5x)xx(81)^(2)xx6561)/(3^(2x))=3^(7) , then x =_______

If (3^(5x)\ xx\ 81^2\ xx\ \ 6561)/(3^(2x))=3^7, then x= (a)\ 3 (b) -3 (c) 1/3 (d) -1/3

If (3x-2)/(3) + (2x+3)/(2) = x +(7)/(6) , then the value of (5x-2)/(4) is

If (5x)/3 - 7/2 ((2x)/5 - 1/3) = 1/3 , then the value of x is ________

(lim)_(x->3)(x^4-81)/(2x^2-5x-3)

If 3^x=6561 , then 3^(x-3) is ____