Home
Class 11
MATHS
For all z in C, prove that (i) (1)/(2)...

For all z `in` C, prove that
(i) `(1)/(2)(z+bar(z))=Re(z),`
(ii) `(1)/(2i)(z-bar(z))=Im(z),`
(iii) `z bar(z)=|z|^(2),`
(iv) `z+bar(z))"is real",`
(v) `(z-bar(z))"is 0 or imaginary".`

Promotional Banner

Similar Questions

Explore conceptually related problems

if z-bar(z)=0 then z is purely imaginary

Prove that: R_e z= (z+bar(z))/2, I_m z= (z-bar(z))/(2i) .

Let z=log_(2)(1+i) then (z+bar(z))+i(z-bar(z))=

Prove that : z= bar(z) iff z is real.

Conjugate of a complex no and its properties. If z, z_1, z_2 are complex no.; then :- (i) bar(barz)=z (ii)z+barz=2Re(z)(iii)z-barz=2i Im(z) (iv)z=barz hArr z is purely real (v) z+barz=0implies z is purely imaginary (vi)zbarz=[Re(z)]^2+[Im(z)]^2

If |z|=3 then ((9+z)/(1+bar(z))) equals (A) z(B)bar(z) (C) 3z(D)z+bar(z) equals (A) z(B)bar(z)

The conjugate of x+2bar(z) is (i) 2bar(z)+z (ii) bar(z)+2z( iii) bar(z)-2z( iv )bar(z)-z

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to