Home
Class 11
MATHS
int(e^(x)dx)/(e^(x)-1)...

`int(e^(x)dx)/(e^(x)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^(2x)+1)/(e^(2x)-1)dx=

Evaluate; int(e^(x)+1)/(e^(x)-1)dx

int(e^x dx)/(1-e^(x))

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int_(0)^(1)(e^(x)dx)/(1+e^(x))

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))