Home
Class 11
MATHS
If A+B=45^(0) and none of A and B is an ...

If `A+B=45^(0)` and none of A and B is an odd multiple of `(pi)/(2)` ,prove that `(1+tan A)(1+tan B)=2` and hence deduce that `tan22(1)/(2)=sqrt(2)-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B=(pi)/(4), prove that: (1+tan A)(1+tan B)=2(cot A-1)(cot B-1)=2

If A+B=45^(@) then prove that (1+tan A)(1+tan B)=2. On the basis of the result obtained prove that tan22.5^(0)=sqrt(2)-1

If A+B+C= pi/2 , prove that tan A tan B+tan B tan C+tan C tan A=1

If (A)/(2) and A are not an odd multiple of (pi)/(2) then tan A= (2tan A)/(1-tan^(2)A) (2tan A)/(1+tan^(2)A) (2tan (A/2))/(1-tan^(2)(A/2))

If A+B=45^(@) , then (1+ tan A)(1+ tan B) =__________

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

If A-B=pi/4, then (1+tan A)(1-tan B) is equal to 2 b.1 c.0 d.3

If tan A=1//2, tan B=1//3 , then prove that cos 2A=sin2B .

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A