Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3+ax^2+bx+c = 0 ` then `sumalpha^2(beta+gamma) =` (i) `ab+3c` (ii)`ab-3c` (iii) `3c-ab` (iv) `3abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^(3)+x^(2)+x+1=0 then alpha^(3)+beta^(3)+gamma^(3)=

If alpha,beta,gamma are the roots of x^(3)-3x^(2)+4x-7=0, then (alpha+2)(beta+2)(gamma+2)=

If alpha,beta,gamma are the roots of x^(3)+px^(2)+qx+r=0 then alpha^(3)+beta^(3)+gamma^(3)=

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-3x-1=0 then alpha^(-2)+beta^(-2)+gamma^(-2)=

If alpha,beta,gamma are the roots of 4x^(3)-x^(2)+10x+d=0 then sum alpha(beta+gamma)=(i)10(ii)-10(iii)5(iv)-5

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =