Home
Class 9
MATHS
f(x)=3x^4+2x^3-(x^2)/3-x/9+2/(27),\ g(x)...

`f(x)=3x^4+2x^3-(x^2)/3-x/9+2/(27),\ g(x)=\ x+2/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

" 2" f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

f(x)=3x^(4)+17x^(3)+9x^(2)-7x-10;g(x)=x+

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

Divide P(x)=2x^4+3x^3-2x^2-9x-12 by g(x)=x^2-3

Let f(x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

f(x)=3x^(3)+x^(2)-20x+12,g(x)=3x-2

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cos +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

If f(x)=3x^(3)-9x^(2)-27x+15 , then