Home
Class 10
MATHS
Find the least positive real number K su...

Find the least positive real number K such that for any positive real numbers x,y,z the following inequality holds `xsqrt(y)+ysqrt(z)+zsqrt(x)lt=Ksqrt((x+y)(y+z)(z+x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y, z are positive real numbers such that x+y+z=a, then

If x, y, z are positive real numbers such that x+y+z=a, then

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x,yand z are positive real numbers,then the minimum value of (x)/(y)+(y)/(z)+(z)/(x) is:

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x,y and z are positive real numbers such that x=(12-yz)/(y+z) the maximum value of xyz=

If x. y, z are positive real numbers such that x^2+y^2+z^2=27, then x^3+y^3+z^3 has