Home
Class 10
MATHS
Evaluate [1/sqrt2+1/sqrt3+....+1/sqrt(10...

Evaluate `[1/sqrt2+1/sqrt3+....+1/sqrt(10000)]` where [x] is greatest integer `lt=x`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of [sqrt(1)]+[sqrt(2)]+[sqrt(3)]+…+[sqrt(49)]+[sqrt(50)] where [x] denoted greatest integer function?

Find domain of f(x)=(1)/(sqrt([x]^(2)-[x]-6)) where [x] is greatest integer <=x

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

The value of int_(0)^(sqrt(2))[x^(2)]dx ,where [.] is the greatest integer function (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

lim_(xrarr1^(+))(log_(sqrt2)sqrt2x)^(1/({x})) where [ ] represents greatest integer function is

The value of lim_(xtoa)[sqrt(2-x)+sqrt(1+x)] , where a in[0,1/2] and [.] denotes the greatest integer function is:

f(x)=(1)/(sqrt(|||x|-1]|-5)),[.] is the greatest integer functio.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.