Home
Class 11
MATHS
In =int1^e (log)^ndx and In=A+BI(n+1) th...

`I_n =int_1^e (log)^ndx` and `I_n=A+BI_(n+1)` then `A&B=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_1^(e) x^(n) log x dx

If n in N and I_(n) = int (log x)^(n) dx , then I_(n) + n I_(n - 1) =

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)