Home
Class 12
MATHS
If A=[(1,2,2),(2,1,-2),(-2,2,-1)] thenA^...

If `A=[(1,2,2),(2,1,-2),(-2,2,-1)]` then`A^(T)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

If A= [(2,1,2),(1,2,0),(2,1,-1)] ,B= [(1,1,0),(2,2,1),(1,0,-1)] Verify the following (iI) (A-B)^(T)=A^(T)-B^(T)

If A= [(2,1,2),(1,2,0),(2,1,-1)] ,B= [(1,1,0),(2,2,1),(1,0,-1)] Verify the following (i) (A+B)^(T)=A^(T)+B^(T)

If A= [(2,1,2),(1,2,0),(2,1,-1)] ,B= [(1,1,0),(2,2,1),(1,0,-1)] Verify the following (IV) (AB)^(T)=B^(T)A^(T)

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

If A=((1,2,1),(2,-1,1)) and B=((2,-1),(-1,4),(0,2)) show that (AB)^(T)=B^(T)A^(T)

If A=[{:(1,-2,2),(3,1,-1):}]andB=[{:(2,4),(1,2),(3,-1):}] , then verify that (AB)^(T)=B^(T)A^(T) .