Home
Class 12
MATHS
lim[n->oo](1+2+3+.....+n)/n^2...

`lim_[n->oo](1+2+3+.....+n)/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=

Evaluate the following limits : Lim_(n to oo) (1+2+3+...+n)/(n^(2)) ( or Lim_(x to oo) (Sigman)/(n^(2)))

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (3n ^ (2)) =?

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))

lim_ (n rarr oo) (1 + 2 + 3 + ... + n) / (n ^ (2) +10)