Home
Class 11
MATHS
let l = lim(x->2) ([x])/({x}) and m= ...

let ` l = lim_(x->2) ([x])/({x}) ` and ` m= lim_(x->2) ({x})/([x])`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x->0)([x]^2)/(x^2)=l and lim_(x->0)([x^2])/(x^2)=m , where [dot] denotes greatest integer. Then (a) l exists but m does not (b) m exists but l does not (c)both l and m exist (d) neither l nor m exists

Let a = lim_(x->0) x cotx and b = lim_(x->0) xlog x, then

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

lim_(x rarr2^(-))(x)/([x])!=lim_(x rarr2^(+))(x)/([x])