Home
Class 11
MATHS
If n is a non zero integer and [*] denot...

If n is a non zero integer and [*] denotes the greatest integer function then `lim_(x->0)[(nsinx/x] + lim_(x->)[ntanx/x]` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x->0)[nsinx/x] + lim_(x->0)[ntanx/x] equals

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x->0)[nsinx/x] + lim_(x->0)[ntanx/x] equals

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

If [.] denotes the greatest integer function, then lim_(xto0) [(x^2)/(tanx sin x)] , is

If [.] denotes the greatest integer function, then lim_(xrarr0) [(x^2)/(tanx sin x)] , is

If [.] denotes the greatest integer function then lim_(x->oo)([x]+[2x]+[3x]+[4x])/x^2 is

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to