Home
Class 13
MATHS
" Prutu that "2tan^(-1)(1)/(x)=sin^(-1)(...

" Prutu that "2tan^(-1)(1)/(x)=sin^(-1)((2x)/(x^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

If x lt -1," then "2tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...