Home
Class 12
MATHS
Solution of the differential equation co...

Solution of the differential equation `cosxdy=y(sinx-y)dx, 0 lt x lt pi/2` is (A) `tanx=(secx+c)y` (B) `secx=(tanx+c)y` (C) `ysecx=tanx+c` (D) `ytanx=secx+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of the differential equation cosx dy= y(sinx -y)dx , 0 lt x lt pi/2 (A) secx=(tanx+c)y (B) ysecx=tanx+c (C) ytanx=secx+c (D) tanx=(secx+c)y

Solve the differential equations: (dy)/(dx) + y secx = tanx 0 le x le pi/2

Find the differentiation of y=tan^(-1)(secx+tanx)

Solve the following differential equation: (dy)/(dx)+secx*y=tanx(0lexltpi/2)

Solve the following differential equation: (dy)/(dx)+secx*y=tanx(0lexltpi/2)

The general solution of the differential equation (dy)/(dx)+ysecx=tanx is y(secx-tanx)=secx-tanx+x+k .

For the differential equation, find the general solution: (dy/dx) + (secx)y = tanx

Find the general solution of the differential equations: (dy)/(dx)+(secx)y=tanx (0 <= x < pi/2)

The solution of the differential equation dy/dx + y/2 secx = tanx/(2y), where 0 <= x < pi/2, and y(0)=1, is given by