Home
Class 12
MATHS
" 13."(1)/(sqrt((x-1)(x-2)))...

" 13."(1)/(sqrt((x-1)(x-2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

Solve the equation: (sqrt(x+13)+sqrt(x-1))/(sqrt(x+13)-sqrt(x-1))=3 solution is {3/17}If true then enter 1 and if false then enter 0

Find the domain of the function : f(x)=(1)/(sqrt(log_((1)/(2))(x^(2)-7x+13)))

If x>1 and (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=2 then x

(1)/(sqrt(x)+sqrt(x+1))+(1)/(sqrt(x+1)+sqrt(x+2))+(1)/(sqrt(x+2)+sqrt(x+3))+...(1)/(sqrt(x+98)+sqrt(x+99))

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

If x+sqrt(x^(2)-1)+(1)/(x+sqrt(x^(2)+1))=20 then x^(2)+sqrt(x^(4)-1)+(1)/(x^(2)+sqrt(x^(4)-1))=

sqrt((x)/(1-x))+sqrt((1-x)/(x))=(13)/(6)

sqrt((x)/(1-x))+sqrt((1-x)/(x))=(13)/(6)