Home
Class 12
MATHS
Suppose for a differentiable function f,...

Suppose for a differentiable function `f,f(0)=0,f(1)=1` and `f(0)=4=f'(1)` If `g(x)=f(e^x).e^(f(x))` then `g' (0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If for a continuous function f,f(0)=f(1)=0,f'(1)=2 and g(x)=f(e^(x))e^(f(x)) then g'(0)=

Let f:(-1,1)toR be a differentiable function with f(0)=-1 and f'(0)=1 . Let g(x)=[f(2f(x)+2)]^(2) . Then g'(0)=

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) =1 If, g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals

Let f : (-1,1) to R be a differentiable function with f(0) =-1 and f'(0)=1 Let g(x)= [f(f(2x)+1)]^2 . Then g'(0)=