Home
Class 10
MATHS
I fA=[a(i j)](2xx2) such that a(i j)=i-...

`I fA=[a_(i j)]_(2xx2)` such that `a_(i j)=i-j+3` ,then find A.

Text Solution

Verified by Experts

The correct Answer is:
`[{:(3, 2),(4, 3):}]`
Promotional Banner

Similar Questions

Explore conceptually related problems

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

If A=([a_(i j)])_(3x3') such that a_(i j)={2,,i=j0,i!=j ,t h e n |A|=8 (b) |A d jdotA|=32 C+log_(1/2)(|A|^(|A d jdotA|))=-191 |A d jdot(A d jdotA)|=12^(12)

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

If A=[a_(ij)]_(2xx3) , difined as a_(ij)=i^(2)-j+1 , then find matrix A.

If A=([a_(i j)])_(3xx3), such that a_(i j)={2,i=j and 0,i!=j ,t h e n1+(log)_(1//2)(|A|^(|a d jA|)) is equal to a.-191 b.-23 c.0 d. does not exists

If A=[a_(ij)] is a 2xx2 matrix such that a_(ij)=i+2j, write A

let A={a_(ij)}_(3xx3) such that a_(ij)={3,i=j and 0,i!=j .then {(det(adj(adjA)))/(5)} equals: (where {.} represents fractional part)

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))