A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
MATRICES
PEARSON IIT JEE FOUNDATION|Exercise EXERCISE CONCEPT APPLICATION (LEVEL 3)|15 VideosMATRICES
PEARSON IIT JEE FOUNDATION|Exercise EXERCISE CONCEPT APPLICATION (LEVEL 1)|30 VideosMATHEMATICAL INDUCTION AND BIONOMIAL THEOREM
PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|15 VideosMENSURATION
PEARSON IIT JEE FOUNDATION|Exercise Level 3|21 Videos
Similar Questions
Explore conceptually related problems
PEARSON IIT JEE FOUNDATION-MATRICES-EXERCISE CONCEPT APPLICATION (LEVEL 2)
- If A =((4,22),(-1,-6)), then find A +A^-1.
Text Solution
|
- If A = [{:(4, p), (3, -4):}] " and " A-A^(-1) = 0, then p = .
Text Solution
|
- If ({:(11, -4), (8, -3):})({:(-x, 4), (-8, y):}) = -({:(2, 3),(6, 9):}...
Text Solution
|
- If [(a^x),(a^(-x))][(1,2)]=[(p,a^(- 2)),(q,log2 2)],(a >0) then a^(p...
Text Solution
|
- If the matrix [{:(2^(a), 32),(36, 12^(b)):}] is singular and if k = (2...
Text Solution
|
- If A =[(7,6),(-8,-7)] then find (A^12345)^-1.
Text Solution
|
- The inverse of a diagonal matrix, whose principal diagonal elements ar...
Text Solution
|
- If [(4^b,288),(72,18^a)] is a singular matrix and 2b = a +1/c then c ...
Text Solution
|
- If A is a non-singular square matrix such that A^2-7A+5I=0, then A^-1
Text Solution
|
- If A = a [{:(-1, 0), (-1, 2):}]"nd B "= [{:(3, 2), (-1, 0):}], " then ...
Text Solution
|
- If P=[(secalpha,tanalpha),(-cotalpha,cosalpha)] and Q=[(-cosalpha,tan...
Text Solution
|
- If A is a skew-symmetric matrix such that AB = aI, then find (A^-1)^T
Text Solution
|
- If A = [{:(8, -7), (9, -8):}], " then " (A^(2007))^(-1) =.
Text Solution
|
- If the matrix ({:(10, -9), (5x + 7, 5):}) is non-singular, then the ra...
Text Solution
|
- If AB = BA, then prove that ABAB = A^(2)B^(2). The following are the s...
Text Solution
|
- The following are the steps in finding the matrix B, if B + ({:(2, 3),...
Text Solution
|
- (AB)^(-1) =.
Text Solution
|
- If |{:(2, -4), (9, d-3):}|=4, then d = .
Text Solution
|
- If A = ({:(2, 3), (6, 9):}), then find |A|.
Text Solution
|