Home
Class 10
MATHS
If A = ({:(5, 5), (0, 0):})({:(0, 0), (...

If `A = ({:(5, 5), (0, 0):})({:(0, 0), (5, 5):}) " and " A^(n) = ({:(5^(200), 5^(200)), (0, 0):})`, then find n.

A

100

B

50

C

25

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \( A^n = \begin{pmatrix} 5^{200} & 5^{200} \\ 0 & 0 \end{pmatrix} \), given the matrix \( A = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 5 & 5 \end{pmatrix} \). ### Step 1: Calculate the product of matrices A We first need to multiply the two matrices to find \( A \). \[ A = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 5 & 5 \end{pmatrix} \] Using the matrix multiplication formula, we calculate each element of the resulting matrix: - First row, first column: \[ (5 \cdot 0) + (5 \cdot 5) = 0 + 25 = 25 \] - First row, second column: \[ (5 \cdot 0) + (5 \cdot 5) = 0 + 25 = 25 \] - Second row, first column: \[ (0 \cdot 0) + (0 \cdot 5) = 0 + 0 = 0 \] - Second row, second column: \[ (0 \cdot 0) + (0 \cdot 5) = 0 + 0 = 0 \] Thus, we have: \[ A = \begin{pmatrix} 25 & 25 \\ 0 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^n \) Next, we need to find \( A^n \). We can observe that \( A \) can be expressed as: \[ A = 25 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \] Now, let's denote \( B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \). Then: \[ A^n = 25^n B^n \] ### Step 3: Find \( B^n \) Now we need to find \( B^n \). We can calculate \( B^2 \) to see the pattern: \[ B^2 = B \cdot B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \] It can be observed that \( B^n = B \) for any \( n \geq 1 \). ### Step 4: Compare \( A^n \) with given matrix Now we have: \[ A^n = 25^n B = 25^n \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \] We need to compare this with: \[ \begin{pmatrix} 5^{200} & 5^{200} \\ 0 & 0 \end{pmatrix} \] This gives us: \[ 25^n = 5^{200} \] ### Step 5: Solve for \( n \) We know that \( 25 = 5^2 \), thus: \[ (5^2)^n = 5^{200} \] \[ 5^{2n} = 5^{200} \] By equating the exponents, we have: \[ 2n = 200 \implies n = \frac{200}{2} = 100 \] ### Final Answer Therefore, the value of \( n \) is: \[ \boxed{100} \]

To solve the problem, we need to find the value of \( n \) such that \( A^n = \begin{pmatrix} 5^{200} & 5^{200} \\ 0 & 0 \end{pmatrix} \), given the matrix \( A = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 5 & 5 \end{pmatrix} \). ### Step 1: Calculate the product of matrices A We first need to multiply the two matrices to find \( A \). \[ A = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 5 & 5 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise EXERCISE CONCEPT APPLICATION (LEVEL 2)|19 Videos
  • MATHEMATICAL INDUCTION AND BIONOMIAL THEOREM

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|15 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|21 Videos

Similar Questions

Explore conceptually related problems

If A = ({:(5, 5x, x ),(0, x , 5x),(0, 0, 5):}) and |A^(2)| = 25 , then |x| is equal to

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

If {:[(0,3,-5),(-3,0,6),(5,-6,0)]:} is a

(i) If A= [[2,5],[0,0]] then find A'

Consider a loop ABCDEFA. With coordinates A (0, 0, 0), B(5, 0, 0), C(5, 5, 0), D(0, 5, 0) E(0, 5, 5) and F(0, 0, 5). Find magnetic flux through loop due to magnetic field vecB = 3 hati+4 hatk

Find the value of (2^(0)+7^(0))/(5^(0))

If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]] , then A^(5)=

If A=[[0, 1, -2], [-1, 0, 5], [2, -5, 0]] , then