Home
Class 7
MATHS
If a^(2) - b^(2) = 36 and a + b = 4 the...

If `a^(2) - b^(2) = 36` and `a + b = 4` then `(a - b)^(2) = "______"` .

A

36

B

9

C

81

D

144

Text Solution

Verified by Experts

The correct Answer is:
C

a + b = 4
`a^(2) - b^(2) = (a + b) (a - b) = 36`
Eq. (2) `div` Eq. (1) , we get
`((a -b)(a+b))/((a+b)) = (36)/(4) = 9`
`a - b = 9`
`implies (a - b)^(2) = 9^(2) = 81`
Hence , the correct option is (c) .
Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2) -B^(2) = 864 and A+B = 36 then find the value of 'B'?

If a^4+a^2b^2+b^4=8 and a^2+ab+b^2=4 then ab=

If a^(4) + b^(4) = a^(2) b^(2) find a^(6) + b^(6)

If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4 find ab

If (2a+ b)/(a+4b) = 3 , then find the value of (a+b)/(a+2b)