Home
Class 7
MATHS
Factorise (2a + 3b)^(2) - (3a - 2b)^(2) ...

Factorise `(2a + 3b)^(2) - (3a - 2b)^(2)` .

A

`(5a + b) (5a - b)`

B

`(a + 5b) (a - 5b)`

C

`(5a + b) (5b - a)`

D

`(5a + b) (5b + a)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((2a + 3b)^{2} - (3a - 2b)^{2}\), we can use the difference of squares formula, which states that \(A^{2} - B^{2} = (A + B)(A - B)\). ### Step-by-Step Solution: 1. **Identify A and B**: - Let \(A = 2a + 3b\) - Let \(B = 3a - 2b\) 2. **Apply the Difference of Squares Formula**: - According to the formula, we have: \[ (2a + 3b)^{2} - (3a - 2b)^{2} = (A + B)(A - B) \] 3. **Calculate A + B**: - \(A + B = (2a + 3b) + (3a - 2b)\) - Combine like terms: \[ A + B = 2a + 3a + 3b - 2b = 5a + b \] 4. **Calculate A - B**: - \(A - B = (2a + 3b) - (3a - 2b)\) - Distributing the negative sign: \[ A - B = 2a + 3b - 3a + 2b = 2a - 3a + 3b + 2b = -a + 5b = 5b - a \] 5. **Combine the Results**: - Now substituting back into the formula: \[ (2a + 3b)^{2} - (3a - 2b)^{2} = (5a + b)(5b - a) \] ### Final Answer: The factorized form of \((2a + 3b)^{2} - (3a - 2b)^{2}\) is: \[ (5a + b)(5b - a) \]

To factorize the expression \((2a + 3b)^{2} - (3a - 2b)^{2}\), we can use the difference of squares formula, which states that \(A^{2} - B^{2} = (A + B)(A - B)\). ### Step-by-Step Solution: 1. **Identify A and B**: - Let \(A = 2a + 3b\) - Let \(B = 3a - 2b\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise: 3 (a-2b)^(2) -5 (a - 2b )

Factorise a^(3) - 3b^(2) + 3a^(2) - ab^(2) The following steps are involved in solving the above problem . Arrange them in sequential order . (A) (a + 3) (a^(2) - b^(2)) (B) Rearrange the terms as a^(3) + 3a^(2) - 3b^(2) - ab^(2) (C) a^(2) (a + 3) - b^(2) ( 3 + a) (D) (a + 3) (a + b) ( a-b)

Factorise a^(2)-9b^(2) .

Factorise: 6a (a -2b ) + 5b (a - 2b )

Factorise: b^(2)-6ab-9a^(2)

Factorise 27a^2-48b^2

Factorise 12a^(2)b+15ab^(2)

Factorise: 16a ^(2) -225b ^(2)

Factorise: 48a^(2)-243b^(2)