Home
Class 7
MATHS
Factorise x^(4) + x^(2) + 1 ....

Factorise `x^(4) + x^(2) + 1 . `

A

`(x^(2) - x - 1) (x^(2) + x -1)`

B

`(x^(2) + x + 1) (x^(2) - x + 1)`

C

`(x^(2) - x + 1) (x^(2) + x)`

D

`(x^(2) + x - 1) (x^(2) - 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^4 + x^2 + 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^4 + x^2 + 1 \] We can recognize that this expression can be manipulated by introducing a new variable. Let \( y = x^2 \). Then, we can rewrite the expression as: \[ y^2 + y + 1 \] ### Step 2: Factor the quadratic expression Next, we will factor the quadratic expression \( y^2 + y + 1 \). To factor it, we can look for two numbers that multiply to \( 1 \) (the constant term) and add up to \( 1 \) (the coefficient of \( y \)). However, there are no such real numbers. Therefore, we can use the quadratic formula to find the roots: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = 1 \). ### Step 3: Calculate the discriminant Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 \] Since the discriminant is negative, this indicates that the quadratic does not factor over the real numbers. ### Step 4: Use complex roots The roots of the quadratic are: \[ y = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Thus, we can express the quadratic in its factored form using these roots: \[ y^2 + y + 1 = \left(y - \frac{-1 + i\sqrt{3}}{2}\right)\left(y - \frac{-1 - i\sqrt{3}}{2}\right) \] ### Step 5: Substitute back for \( y \) Now substituting back \( y = x^2 \): \[ x^4 + x^2 + 1 = \left(x^2 - \frac{-1 + i\sqrt{3}}{2}\right)\left(x^2 - \frac{-1 - i\sqrt{3}}{2}\right) \] ### Conclusion Thus, the factorization of \( x^4 + x^2 + 1 \) over the complex numbers is: \[ \left(x^2 + \frac{1}{2} - \frac{i\sqrt{3}}{2}\right)\left(x^2 + \frac{1}{2} + \frac{i\sqrt{3}}{2}\right) \]

To factorize the expression \( x^4 + x^2 + 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^4 + x^2 + 1 \] We can recognize that this expression can be manipulated by introducing a new variable. Let \( y = x^2 \). Then, we can rewrite the expression as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise x^(4)+x^(2)+25

Factorise 4x ^(4) + 3x ^(2) +1

Factorise : x^(4)-1

Factorise x ^(8) + x ^(4) +1

Factorise : x^(4)-3x^(2)+2

Factorise :x^(4)+3x^(2)-28

Factorise x^(3)+2x^(2)+x .

Factorise x^(2)+4x+4

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise x^(4) + x^(3) - x^(2) - x .