Home
Class 11
MATHS
7e^(x)+log(a)x...

`7e^(x)+log_(a)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

If g(x)=|[a^(-x),e^(x log_e a),x^2],[a^(-3x),e^(3x log_e a),x^4],[a^(-5x),e^(5x log_e a),1]| , then

If g(x)=|[a^(-x),e^(x log_e a),x^2],[a^(-3x),e^(3x log_e a),x^4],[a^(-5x),e^(5x log_e a),1]| , then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

Draw the graph of y=log_(e)(-x),-log_(e)x,y=|log_(e)x|,y=log_(e)|x| and y=|log_(e)|x|| transforming the graph of y=log_(e)x.