Home
Class 12
MATHS
Prove that tan^(-1)x+tan^(-1)y=tan^(-1)(...

Prove that `tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))` when `xylt1`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

tan^(-1)((x+y)/(1-xy)),xy<1 =

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

Prove that tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)((x+y+z-xyz)/(1-xy-yz-zx))