Home
Class 11
MATHS
4l^(n)-14^(n)" is "am...

4l^(n)-14^(n)" is "am

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of n so that C(n-1,3)+C(n-1,4)>C(n,3) is?

If the integral l_(n)=int_(0)^(pi//4)tan^(n)xdx is reduced to its lower integrals like l_(n-1),l_(n-2) etc., Then l_(2)+l_(4),l_(3)+l_(5)andl_(4)+l_(6) are in

(a^n/a^m)^(m+n)xx(a^l/a^n)^(n+l)xx(a^m/a^l)^(l+m) =_____

If m is the A.M. of two distinct real numbers l and n""(""l ,""n"">""1) and G1, G2 and G3 are three geometric means between l and n, then G1 4+2G2 4+G3 4 equals, (1) 4l^2 mn (2) 4l^m^2 mn (3) 4l m n^2 (4) 4l^2m^2n^2

If m is the A.M. of two distinct real numbers l and n""(""l ,""n"">""1) and G1, G2 and G3 are three geometric means between l and n, then G1 4+2G2 4+G3 4 equals, (1) 4l^2 mn (2) 4l^m^2 mn (3) 4l m n^2 (4) 4l^2m^2n^2

If m is the A.M. of two distinct real numbers l and n""(""l ,""n"">""1) and G_1, G_2 and G_3 are three geometric means between l and n, then G_1^4+2G_2^4+G_3^4 equals, (1) 4l^2 mn (2) 4l^m^2 mn (3) 4l m n^2 (4) 4l^2m^2n^2

If m is the A.M. of two distinct real numbers l and n""(""l ,""n"">""1) and G1, G2 and G3 are three geometric means between l and n, then G1 4+2G2 4+G3 4 equals, (1) 4l^2 mn (2) 4l^m^2 mn (3) 4l m n^2 (4) 4l^2m^2n^2

If m is the A.M. of two distinct real numbers l and n""(""l ,""n"">""1) and G1, G2 and G3 are three geometric means between l and n, then G1 ^4+2G2 ^4+G3^ 4 equals, (1) 4l^2 mn (2) 4l^m^2 mn (3) 4l m n^2 (4) 4l^2m^2n^2

If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 (l n a + (l n a)^(2) + ( ln a)^(3) + (l n a)^(4) + ....) then 'a' is equal to