Home
Class 9
MATHS
log(x)A^(n) =...

`log_(x)A^(n)` = ______

Text Solution

Verified by Experts

The correct Answer is:
`nlog_(x)A`
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(a)x = m and log_(b)x =n then log_(a/b) x= ______

sum_(n=0)^(oo)((log_(e)x)^(n))/(n!) is equal to

Properties of logarithmic function Property (5)log_(a)(x^(n))=n log_(a)|x|(6)log_(a)^(n)x^(m)=(m)/(n)log_(a)x(7)x^(log_(a)y)=y^(log_(a)x)

If I_(n)=int_(1)^(e)(log_(e)x)^(n)dx(n is a positive number),I_(2012)+(2012)I_(2011)=

log(x)^(n)=n.log x is true for

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If cos^(-1)((y)/(b))=log((x)/(n))^(n) Find the value of x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+n^(2)y

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

The value of log_(x^(n))y^(m) is