Home
Class 9
MATHS
If 3^(log(3)(5))+5^(log(x)3) =8 then fin...

If `3^(log_(3)(5))+5^(log_(x)3) =8` then find the value of x.

A

3

B

5

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
B

` 3( log_(3)5 ) + 5^(log_(x)3) = 8`
` Rightarrow 5 + 5^(log_(x) 3) =8`
` Rightarrow 5 log_(x)3) =3`
` 3^(log_(x) 5) =3`
` log_(x) 5=1`
`Rightarrow log_(x) 5=1`
` Rightarrow x=5`
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(k)xlog_(5)k=3 , then find the value of x.

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

If log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x , then find the value of a + b.

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If (log_(5) K) (log_(3) 5) (log_(k) x ) = k , then the value of x if k = 3 is

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is

if log_(49)3 xx log_(9)7 xx log_(2)8 = x then find the value of (4x)/3

If log_(q)(xy)=3 and log_(q)(x^(2)y^(3))=4 , find the value of log_(q)x ,