Home
Class 9
MATHS
If log(5)x-log(5)y = log(5)4 + log(5)2 a...

If `log_(5)x-log_(5)y = log_(5)4 + log_(5)2 and x - y = 7`, then = ______ .

A

1

B

8

C

7

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_5 x - \log_5 y = \log_5 4 + \log_5 2 \) and \( x - y = 7 \), we will follow these steps: ### Step 1: Simplify the logarithmic equation Using the properties of logarithms, we can rewrite the left side: \[ \log_5 x - \log_5 y = \log_5 \left(\frac{x}{y}\right) \] For the right side, we can combine the logarithms: \[ \log_5 4 + \log_5 2 = \log_5 (4 \cdot 2) = \log_5 8 \] So, we have: \[ \log_5 \left(\frac{x}{y}\right) = \log_5 8 \] ### Step 2: Remove the logarithm Since the logarithms are equal, we can set the arguments equal to each other: \[ \frac{x}{y} = 8 \] This implies: \[ x = 8y \] ### Step 3: Substitute into the second equation We know from the problem statement that \( x - y = 7 \). Now, substituting \( x = 8y \) into this equation gives: \[ 8y - y = 7 \] This simplifies to: \[ 7y = 7 \] ### Step 4: Solve for \( y \) Dividing both sides by 7: \[ y = 1 \] ### Step 5: Find \( x \) Now, substituting \( y = 1 \) back into \( x = 8y \): \[ x = 8 \cdot 1 = 8 \] ### Conclusion Thus, the values of \( x \) and \( y \) are: \[ x = 8 \quad \text{and} \quad y = 1 \] ### Final Answer The value of \( x \) is \( 8 \). ---

To solve the equation \( \log_5 x - \log_5 y = \log_5 4 + \log_5 2 \) and \( x - y = 7 \), we will follow these steps: ### Step 1: Simplify the logarithmic equation Using the properties of logarithms, we can rewrite the left side: \[ \log_5 x - \log_5 y = \log_5 \left(\frac{x}{y}\right) \] For the right side, we can combine the logarithms: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 2 MCQ|24 Videos
  • LOCUS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|20 Videos

Similar Questions

Explore conceptually related problems

x=log_(5)3+log_(7)5+log_(9)7

If log_(70)7=x,log_(70)5=y then log_(70)4=

Knowledge Check

  • If log_(3) x log_(y) 3 log_(2) y = 5 , then x =

    A
    `3 y^(5)`
    B
    243
    C
    32
    D
    None of these
  • If log_(3)xlog_(y)3log_(2)y=5 , then x=

    A
    `3y^(5)`
    B
    `243`
    C
    `32`
    D
    none of these
  • If log_(5) log_(5) log_(3) x = 0 , then value of x is

    A
    243
    B
    125
    C
    625
    D
    25
  • Similar Questions

    Explore conceptually related problems

    If log_(4)5=x and log_(5)6=y then

    If x= log_(5)3 and y = log_(5)8 then log_(5)24 in terms of x,y is equal to _______

    If x = log_(5) 3 + log_(7) 5 +log_(9)7 then

    If log_(4)5 = x and log_(5)6 = y then

    If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals