Home
Class 9
MATHS
If A = 4x^(3) -8x^(2), B = 7x^(3) -5x + ...

If `A = 4x^(3) -8x^(2), B = 7x^(3) -5x + 3 and C = 3x^(3) + x - 11`, then find `2A -3B + 4C`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(2A - 3B + 4C\), we will first calculate \(2A\), \(3B\), and \(4C\) separately and then combine them. ### Step 1: Calculate \(2A\) Given: \[ A = 4x^3 - 8x^2 \] Now, calculate \(2A\): \[ 2A = 2 \times (4x^3 - 8x^2) = 8x^3 - 16x^2 \] ### Step 2: Calculate \(3B\) Given: \[ B = 7x^3 - 5x + 3 \] Now, calculate \(3B\): \[ 3B = 3 \times (7x^3 - 5x + 3) = 21x^3 - 15x + 9 \] ### Step 3: Calculate \(4C\) Given: \[ C = 3x^3 + x - 11 \] Now, calculate \(4C\): \[ 4C = 4 \times (3x^3 + x - 11) = 12x^3 + 4x - 44 \] ### Step 4: Combine \(2A\), \(-3B\), and \(4C\) Now we need to calculate \(2A - 3B + 4C\): \[ 2A - 3B + 4C = (8x^3 - 16x^2) - (21x^3 - 15x + 9) + (12x^3 + 4x - 44) \] ### Step 5: Simplify the expression First, distribute the negative sign: \[ = 8x^3 - 16x^2 - 21x^3 + 15x - 9 + 12x^3 + 4x - 44 \] Now, combine like terms: 1. For \(x^3\): \[ 8x^3 - 21x^3 + 12x^3 = (8 - 21 + 12)x^3 = -1x^3 \] 2. For \(x^2\): \[ -16x^2 = -16x^2 \] 3. For \(x\): \[ 15x + 4x = 19x \] 4. For the constant terms: \[ -9 - 44 = -53 \] Putting it all together, we have: \[ 2A - 3B + 4C = -x^3 - 16x^2 + 19x - 53 \] ### Final Result Thus, the final expression is: \[ \boxed{-x^3 - 16x^2 + 19x - 53} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS AND SQUARE ROOTS OF ALGEBRAIC EXPRESSIONS

    PEARSON IIT JEE FOUNDATION|Exercise Essay type questions|5 Videos
  • POLYNOMIALS AND SQUARE ROOTS OF ALGEBRAIC EXPRESSIONS

    PEARSON IIT JEE FOUNDATION|Exercise Level 1|30 Videos
  • POLYNOMIALS AND SQUARE ROOTS OF ALGEBRAIC EXPRESSIONS

    PEARSON IIT JEE FOUNDATION|Exercise very short answer type question|30 Videos
  • PERCENTAGES, PROFIT AND LOSS, DISCOUNT AND PARTERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|13 Videos
  • PROBABILITY

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|8 Videos

Similar Questions

Explore conceptually related problems

If A = 4x^(3) - 8x^(2), B = 7x^(3) - 5x + 3 and C = 3x^(3) + x -11 , then find (A +C) - B

If A = 4x^(3) - 5x + 7, B = 2x^(3) -x^(2) + 3 and C = 5x^(3) - 8x^(2) + 10 , then A - 2B - C is

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : 2A - 3B

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : A - B

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : 2A + 3B

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : A + B