Home
Class 9
MATHS
The square root of (3a + 2b + 3c)^(2) - ...

The square root of `(3a + 2b + 3c)^(2) - (2a + 3b + 2c)^(2) + 5b^(2)` is

A

`sqrt5 (a + b + c)`

B

`sqrt5 (a + b)`

C

`sqrt5 (a + c)`

D

`sqrt5 (a + c -b)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(3a + 2b + 3c)^(2) - (2a + 3b + 2c)^(2) + 5b^(2)`
`= (3a + 2b + 3c + 2a + 3b + 2c) (3a + 2b + 3c - 2a - 3b - 2c) + 5b^(2)`
`= (5a + 5b + 5c) (a -b + c) + 5b^(2)`
`= 5(a +c + b) (a +c -b) + 5b^(2)`
`= 5[(a + c^(2)) -b^(2)] + 5b^(2)`
`= 5 (a + c )^(2)`
`:.` Square root of the given expression is
`sqrt(5(a +c)^(2)) = sqrt5 (a +c)`
Promotional Banner

Similar Questions

Explore conceptually related problems

a - [2b - {3a - (2b - 3c)}]

Add : 3a ( 2b + 5c), 3c (2a + 2b)

2a - 3b - [3a - 2b - {a - c- (a - 2b)}]

Add: 6a + 8b - 5c, 2b + c - 4a and a - 3b - 2c.

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a,b are roots of 3x^(2)-4x-2=0, then value of 3a^(2)+7b-(2)/(b) is equal to (a) (16)/(3) (b) (34)/(3)(c)(17)/(5)(d)(28)/(5)