Home
Class 9
MATHS
If sin alpha+ cos alpha=n, then sin^(6)...

If `sin alpha+ cos alpha=n`, then ` sin^(6)alpha+ cos^(6)alpha` in terms of n is ________

A

`4+3(n-1)^(2)`

B

`(4+3(n^(2)-1))/(4)`

C

`4-3(n^(2)-1)^(2))/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \sin^6 \alpha + \cos^6 \alpha \) in terms of \( n \), given that \( \sin \alpha + \cos \alpha = n \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \sin \alpha + \cos \alpha = n \] 2. **Use the identity for \( \sin^6 \alpha + \cos^6 \alpha \):** We can express \( \sin^6 \alpha + \cos^6 \alpha \) using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, let \( a = \sin^2 \alpha \) and \( b = \cos^2 \alpha \). Thus, \[ \sin^6 \alpha + \cos^6 \alpha = (\sin^2 \alpha + \cos^2 \alpha)(\sin^4 \alpha - \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha) \] 3. **Use the Pythagorean identity:** Since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we have: \[ \sin^6 \alpha + \cos^6 \alpha = 1 \cdot (\sin^4 \alpha - \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha) \] Therefore, \[ \sin^6 \alpha + \cos^6 \alpha = \sin^4 \alpha - \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha \] 4. **Express \( \sin^4 \alpha \) and \( \cos^4 \alpha \):** We can use the square of \( \sin^2 \alpha + \cos^2 \alpha \): \[ \sin^4 \alpha + \cos^4 \alpha = (\sin^2 \alpha + \cos^2 \alpha)^2 - 2\sin^2 \alpha \cos^2 \alpha = 1 - 2\sin^2 \alpha \cos^2 \alpha \] 5. **Substitute back into the equation:** Now substituting back, we get: \[ \sin^6 \alpha + \cos^6 \alpha = (1 - 2\sin^2 \alpha \cos^2 \alpha) - \sin^2 \alpha \cos^2 \alpha \] This simplifies to: \[ \sin^6 \alpha + \cos^6 \alpha = 1 - 3\sin^2 \alpha \cos^2 \alpha \] 6. **Find \( \sin^2 \alpha \cos^2 \alpha \):** We know: \[ \sin \alpha + \cos \alpha = n \implies (\sin \alpha + \cos \alpha)^2 = n^2 \] Expanding this gives: \[ \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = n^2 \] Since \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ 1 + 2\sin \alpha \cos \alpha = n^2 \implies 2\sin \alpha \cos \alpha = n^2 - 1 \] Thus, \[ \sin \alpha \cos \alpha = \frac{n^2 - 1}{2} \] 7. **Substitute \( \sin^2 \alpha \cos^2 \alpha \):** Therefore, \[ \sin^2 \alpha \cos^2 \alpha = \left(\frac{n^2 - 1}{2}\right)^2 = \frac{(n^2 - 1)^2}{4} \] 8. **Final substitution:** Substitute this back into our expression for \( \sin^6 \alpha + \cos^6 \alpha \): \[ \sin^6 \alpha + \cos^6 \alpha = 1 - 3 \cdot \frac{(n^2 - 1)^2}{4} \] Simplifying this gives: \[ \sin^6 \alpha + \cos^6 \alpha = 1 - \frac{3(n^2 - 1)^2}{4} \] 9. **Final answer:** Thus, we can express \( \sin^6 \alpha + \cos^6 \alpha \) in terms of \( n \): \[ \sin^6 \alpha + \cos^6 \alpha = \frac{4 - 3(n^2 - 1)^2}{4} \]

To solve the problem, we need to find \( \sin^6 \alpha + \cos^6 \alpha \) in terms of \( n \), given that \( \sin \alpha + \cos \alpha = n \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \sin \alpha + \cos \alpha = n \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha-cos alpha=m, then the value of sin^(6)alpha+cos^(6)alpha in terms of m is

If sin alpha + cos alpha = lambda then find |sin^(6) alpha - cos^(6) alpha| in terms of lambda .

(sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

Show that : sin^6 alpha+ cos^6 alpha ge 1/4

tan theta = (sin alpha-cos alpha) / (sin alpha + cos alpha)

if cos^(2)alpha-sin alpha=(1)/(n) then alpha

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then

If x=a sin alpha+b cos alpha and y=a cos alpha-b sin alpha then remove alpha

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

If cos alpha + cos 2alpha = p , sin alpha + sin 2alpha = q then eliminate alpha .