Home
Class 11
MATHS
Prove that: sin(A+2B)sinA-sinBsin(2A+B...

Prove that:
`sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)

Prove that a sinA - b sinB = c sin(A-B)

Prove that: (sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)

Prove that: (sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)

Prove that, sinA+sinB+sinC-sin(A+B+C)= 4sin((A+B)/(2))sin((B+C)/(2))sin((C+A)/(2))

Prove that : 2 cosA sinB = sin (A + B)- sin (A - B) .

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C