Home
Class 11
MATHS
Prove that sin 2x =( 2tan x )/( 1+ tan ^...

Prove that `sin 2x =( 2tan x )/( 1+ tan ^(2) x) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin 2x=(2 tan x)/(1+tan^(2)x)

Prove that tan2x=(2tanx)/(1-tan^2 x)

Prove that tan 3x= (3tan x-tan^3 x)/(1-3tan^2 x)

Show that sin 2 x=2 sin x cosx=(2 tan x)/(1+tan ^(2) x)

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that (1- sin 2x)/(1+ sin 2x) = tan^(2) .((pi)/(4)-x)

Prove that (sin 4x + sin 2x)/(cos 4x + cos 2x) = tan 3x .

Prove that (1+ sin 2x - cos 2x)/(1+ sin 2x + cos 2x) =tan x

Prove the following: tan 4x =(4tan x (1-tan^2x))/(1-6 tan^2x + tan^4x)