Home
Class 12
MATHS
|[1, b+c, b^(2)+c^(2)], [1, c+a, c^(2)+a...

`|[1, b+c, b^(2)+c^(2)], [1, c+a, c^(2)+a^(2)], [1, a+b, a^(2)+b^(2)]| = (a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1,1,1a,b,ca^(2),b^(2),c^(2)]|=(a-b)(b-c)(c-a)

([1,1,1a,b,ca^(2),b^(2),c^(2)])=(a-b)(b-c)(c-a)

S.T |(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a-b)(b-c)(c-a) .

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)