Home
Class 9
MATHS
sqrt(root(x)(2^(x))root(x^(2))(3^(x^(3))...

`sqrt(root(x)(2^(x))root(x^(2))(3^(x^(3)))root(x^(2))(6^(x^(6)))root(x^(4))(9^(x^(10))))`=

Promotional Banner

Similar Questions

Explore conceptually related problems

(root3(x)*root6(x))/(root4(x^3)*root9(x^6))

Simplify root(5)(x^(4)root(4)(x^(3)root(3)(x^(2)sqrt(x))))

root(3)((x-4)(x-6))>2

int((4x-3)dx)/(root(3)(4x^(2)-6x+9))

If root(3)(3(root(3)(x)-(1)/(root(3)(x)))) =2,then root(3)(x)-(1)/(root(3)(x))

If root(3)(3(root(3)(x)-(1)/(root(3)(x))))=2, then root(3)(x)-(1)/(root(3)(x))

lim_(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2x-3))+root(3)((2x-3))+...+root(n)((2x-3))) is equal to

int(root(3)x ^(2)+root(4)x+root(3)x)/(sqrtx)dx=

int(x+root(3)(x^(2))+root(6)(x))/(x(1+root(3)(x)))dx is equal to (i)(3)/(2)x(1+root(3)(x))(3)/(2)x^((2)/(3))+6tan^(-1)x^(6)+C( iii) (3)/(2)x^((2)/(3))+6tan^(-1)x^((1)/(6))+C( iv) (2)/(3)x^((2)/(3))+5tan^(-1)x^(6)+C