Home
Class 10
MATHS
" 49."tan^(2)A+cot^(2)A=sec^(2)A cosec^(...

" 49."tan^(2)A+cot^(2)A=sec^(2)A cosec^(2)A-2

Promotional Banner

Similar Questions

Explore conceptually related problems

(b) prove that tan^(2)A+cot^(2)A+2=sec^(2)A*cosec^(2)A

If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"cosec"^(2)A is

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

cosec^(2)Acot^(2)A-sec^(2)Atan^(2)A-(cot^(2)A-tan^(2))(sec^(2)Acosec^(2)A-1) =

prove that: tan^(2) phi+cot^(2) phi+2=sec^(2)phi cosec^(2) phi