Home
Class 11
MATHS
tan^(2)(1)/(2)A tan^(2)(1)/(2)B tan^(2)(...

`tan^(2)(1)/(2)A tan^(2)(1)/(2)B tan^(2)(1)/(2)C=((s-a)/(s))((s-b)/(s))((s-c)/(s))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC,tan,(A)/(2)tan,(B)/(2)tan,(C)/(2)=sqrt((1-(a)/(s))(1-(b)/(s)(1-(c)/(s))))

s^(2)tan((A)/(2))tan((B)/(2))tan((C)/(2))

tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2))+tan((C)/(2) ))tan((A)/(2))=1

1-tan(A)/(2)tan(B)/(2)=(2c)/(a+b+c)

v) tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

If 2 s=a+b+c, then show that : |{:(a^(2),(s-a)^(2),(s-a)^(2)),((s-b)^(2),b^(2),(s-b)^(2)),((s-c)^(2),(s-c)^(2),c^(2)):}|=2 s^(3)(s-a)(s-b)(s-c)

In a triangle ABC if cot((A)/(2))*cot((B)/(2))=c,cot((B)/(2))*cot((C)/(2))=a and cot((C)/(2))*cot((A)/(2))=b then (1)/(s-a)+(1)/(s-b)+(1)/(s-c)=

In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=

(tan A)/(2)(tan B)/(2)+(tan B)/(2)(tan C)/(2)+(tan C)/(2)(tan A)/(2) =1