Home
Class 11
MATHS
The conjugate surd of sqrt(a)+b is sqr...

The conjugate surd of `sqrt(a)+b` is
`sqrt(a)-b`
`b- "sqrt(a)`
`sqrt(a)+sqrt(b)`
`sqrt(a)-sqrt(b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : ( sqrt(a) + sqrt(b) ) ( sqrt(a) - sqrt(b) )

(sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sqrt(a-x))=b

(a+c sqrt(b))(2+y sqrt(b))

Show that : sqrt( a/b ) = sqrt(a)/ sqrt( b )

find a and b (6)/(sqrt(3)-sqrt(2))=a sqrt(3)-b sqrt(2)

sqrt(a/b+b/a-2)= 1) sqrt(a/b)+sqrt(b/a) 2) sqrt(a/b)-sqrt(b/a) 3) sqrt(a)/b-b/sqrt(a) 4) sqrt(a)/b-sqrt(b)/a

a((sqrt(a)+sqrt(b))/(2b sqrt(a)))^(-1)+b((sqrt(a)+sqrt(b))/(2a sqrt(b)))^(-1)

If sqrt(a)>sqrt(b)>sqrt(c)>sqrt(d) where a,b,c and d are consecutive natural numbers then which of the following is correct (1)sqrt(a)-sqrt(b)>sqrt(c)-sqrt(d)(2)sqrt(c)-sqrt(d)>sqrt(a)-sqrt(b)(3)sqrt(a)-sqrt(c)>sqrt(b)-sqrt(d)(4)sqrt(c)-sqrt(d)=sqrt(a)-sqrt(b)

If a and b are positive natural numbers (sqrt(a)+sqrt(b))(sqrt(c)+sqrt(d))=sqrt(ac)+sqrt(ad)+sqrt(bc)+sqrt(bd)

If 0