Home
Class 12
MATHS
If f:Irarr I be defined by f(x)=[x+1] ,w...

If `f:Irarr I` be defined by `f(x)=[x+1]` ,where `[.]` denotes the greatest integer function then `f(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f:(3,4)rarr(0,1) defined by f(x)=x-[x] where [x] denotes the greatest integer function then f(x) is

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Let f :(4,6) uu (6,8) be a function defined by f(x) = x+[(x)/(2)] where [.] denotes the greatest integer function, then f^(-1)(x) is equal to

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=1+|x|,x =-1, where [* denotes the greatest integer function.Then f{f(-2.3)} is equal to