Home
Class 12
MATHS
(dy)/(dx) निकालें , जब y = x^((1)/(x))...

`(dy)/(dx)` निकालें , जब
`y = x^((1)/(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if y =x^(x) + (7x-1)^(x)

(dy)/(dx) + (1)/(x) * y = x ^(2)

x(dy)/(dx)-y=x+1

Find dy/dx if y = x^(1/x)

Find (dy)/(dx),quad y=x^(x)+x^((1)/(x))

Find (dy)/(dx) if y = (x+1/x)^(1/x)

(x (dy) / (dx) -y) tan ^ (- 1) ((y) / (x)) = x

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

If y=sqrt((1-x)/(1+x)), find (dy)/(dx) and prove that (1-x^(2))(dy)/(dx)+y=0

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))