Home
Class 12
MATHS
" If "f(x)=min{|x^(2)-1|,|x|}," then num...

`" If "f(x)=min{|x^(2)-1|,|x|}," then number of extremums of "f(x)" in "(-0.9,1.1)" is "`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=min*(1,x^(2),x^(3)), then

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Let f(x)=min{4x+1,x+2,-2x+4}. then the maximum value of f(x) is

If f(x)=min_(1){|x-1|,|x|,|x+1|, then the value of int_(-1)^(1)f(x)dx is equal to

If f(x)= Min {|x-1|,|x|,|x+1|} "then" int_(-1)^(1)f(x)dx eqals

If f(x)={0,x<1 and 2x-2,x<=1 then the number of solutions of the equation f(f(f(x)))=x is