Home
Class 11
MATHS
If A=[[a,b],[c,d]] is invertible,then A^...

If A=`[[a,b],[c,d]]` is invertible,then `A^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [[a,b],[c,d]] is invertible,then

If A is an invertible matrix,tehn (adj.A)^(-1) is equal to adj.(A^(-1)) b.(A)/(det.A) c.A d.(det A)A

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible square matrix,then A^(T) is also invertible and (A^(T))^(-1)=(A^(-1))^(T)

If A, B, C are invertible matrices, then (ABC)^(-1) =

If A=[[a, b],[ c ,d]] , then a d j\ A is [[-d,-b],[-c, a]] (b) [[d,-b],[-c ,a]] (c) [[d, b],[ c, a]] (d) [[d, c],[ b ,a]]

If A =[{:(a, b), (c, d):}] " then " A^(-1) = ____.

If A is an invertible symmetric matrix the A^-1 is A. a diagonal matrix B. symmetric C. skew symmetric D. none of these

If [(1,a,2),(1,2,5),(2,1,1)] is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then