Home
Class 12
MATHS
If the circles x^(2) + y^(2) - 2lambda x...

If the circles `x^(2) + y^(2) - 2lambda x - 2y - 7 = 0` and `3(x^(2) + y^(2)) - 8x + 29y = 0` are orthogonal then `lambda =`

Promotional Banner

Similar Questions

Explore conceptually related problems

For the circles x^(2) + y^(2) - 2x + 3y + k = 0 and x^(2) + y^(2) + 8x - 6y - 7 = 0 to cut each other orthogonally the value of k must be

The two circles x^(2)+y^(2)-2x-2y-7=0 and 3(x^(2)+y^(2))-8x+29y=0

The two circles x^(2)+y^(2)-2x-2y-7=0 and 3(x^(2)+y^(2))-8x+29y=0

For the circles x^2 + y^2 - 2x + 3y + k = 0 and x^2 + y^2 + 8x - 6y - 7 = 0 to cut each other orthogonally the value of k must be

If the circle x^(2) + y^(2) + 8x - 4y + c = 0 touches the circle x^(2) + y^(2) + 2x + 4y - 11 = 0 externally and cuts the circle x^(2) + y^(2) - 6x + 8y + k = 0 orthogonally then k =

If x^(2) + y^(2) - 2x + 3y + k = 0 " and " x^(2) + y^(2) + 8x - 6y = 7 = 0 cut each other orthogonally , the value of k must be