Home
Class 11
MATHS
Prove that : (i) (n!)/(r!)=n(n-1)(n-2...

Prove that :
(i) ` (n!)/(r!)=n(n-1)(n-2)...(r+1)`
(ii) `(n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!)`
(iii) `(n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that: n(n-1)(n-2)…..(n-r+1)=(n!)/((n-r)!)

Prove that .^(n)P_(r)=.^(n-1)P_(r)+r.^(n-1)P_(r-1) .