Home
Class 12
MATHS
If a^(x)=m,a^(y)=n and a^(2)=(m^(y)n^(x)...

If `a^(x)=m,a^(y)=n` and `a^(2)=(m^(y)n^(x))^(z)` show that xyz=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If m!=n and (m+n)^(-1)(m^(-1)+n^(-1))=m^xn^y then show that x+y+2=0

If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y) , show that : x + y + 2 = 0.

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If "tan"^(-1) x +"tan" ^(-1) y +"tan"^(-1)z -pi show that x+y+z=xyz.

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+l) and z=a^(l+m), prove that x^(m)y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),\ y=a^(n+l) and z=a^(l+m) , prove that x^m y^n z^l=x^n y^l z^m

If x^(m)*y^(n)=(x+y)^(m+n) , show that (dy)/(dx)=(y)/(x) .